已知R是实数集,集合,则
A. (-∞,2] B. [0, 1] C. (-∞,1] D. [1, 2]
(本题满分14分) 已知函数
(I)若 在其定义域是增函数,求b的取值范围;
(II)在(I)的结论下,设函数的最小值;
(III)设函数的图象C1与函数的图象C2交于点P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M、N,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.
(本题满分14分) 设{an}是由正数组成的等差数列,Sn是其前n项和
(1)若,求的值;
(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式成立;
(3)是否存在常数k和等差数列{an},使恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。
(本题满分13分) 已知函数,数列满足,.
(Ⅰ)求数列的通项公式;
(Ⅱ)求;
(Ⅲ)求证:
(本题满分13分) 已知函数,.
(1)当时,若上单调递减,求a的取值范围;
(2)求满足下列条件的所有整数对:存在,使得的最大值, 的最小值;
(本题满分13分已知数列是公比为的等比数列,且成等差数列.
(Ⅰ) 求的值;
(Ⅱ) 设数列是以2为首项,为公差的等差数列,其前项和为,
试比较与的大小.