(本小题满分14分)
已知,,.
(Ⅰ)当时,求的单调区间;
(Ⅱ)求在点处的切线与直线及曲线所围成的封闭图形的面积;
(Ⅲ)是否存在实数,使的极大值为3?若存在,求出的值,若不存在,请说明理由.
(本小题满分13分)(1)已知a>0且a1常数,求函数定义
域和值域;
(2)已知命题P:函数在上单调递增;命题Q:不等式
对任意实数恒成立;若是真命题,求实数的取值范
围
(本小题满分13分) 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.
某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热
层建造费用与20年的能源消耗费用之和.(Ⅰ)求的值及的表达式;(Ⅱ)隔热层修建多厚时,总费用达到最小?并求最小值。
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
(本小题满分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范围.
函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.
例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2(x∈R)是单函数;
②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
③若f:A→B为单函数,则对于任意b∈B,它至多有一个原象;
④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.
其中的真命题是________.(写出所有真命题的编号)