(1)(本小题满分7分)选修4-2:矩阵与变换
已知矩阵,其中,若点在矩阵的变换下得到点,
(Ⅰ)求实数a的值; (Ⅱ)求矩阵的特征值及其对应的特征向量.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
已知直线的极坐标方程为,圆的参数方程为
(其中为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆上的点到直线的距离的最小值.
(本小题满分14分)
已知,,.
(Ⅰ)当时,求的单调区间;
(Ⅱ)求在点处的切线与直线及曲线所围成的封闭图形的面积;
(Ⅲ)是否存在实数,使的极大值为3?若存在,求出的值,若不存在,请说明理由.
(本小题满分13分)(1)已知a>0且a1常数,求函数定义
域和值域;
(2)已知命题P:函数在上单调递增;命题Q:不等式
对任意实数恒成立;若是真命题,求实数的取值范
围
(本小题满分13分) 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.
某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热
层建造费用与20年的能源消耗费用之和.(Ⅰ)求的值及的表达式;(Ⅱ)隔热层修建多厚时,总费用达到最小?并求最小值。
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
(本小题满分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范围.