如图,I是全集,M、P、S是I的子集,则阴影部分所表示的集合是( )
A.(M∩P)∩S
B.(M∩P)∪S
C.(M∩P)∩(CIS)
D.(M∩P)∪(CIS)

(本题满分14分) 已知![]()
(Ⅰ)当
时,求曲线
在点
处的切线方程;
(Ⅱ)若
在
处有极值,求
的单调递增区间;
(Ⅲ)是否存在实数
,使
在区间
的最小值是3,若存在,求出
的值;
若不存在,说明理由.
(本题满分13分) 已知椭圆
(
)过点
(0,2),离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线
与椭圆相交于
两点,求
.
(本题满分12分) 已知函数
,其中
.定义数列
如下:
,
.
(1)当
时,求
的值;
(2)是否存在实数m,使
构成公差不为0的等差数列?若存在,请求出实数
的值,若不存在,请说明理由;
(本题满分12分) 在△ABC中,a2+c2=2b2,其中a,b,c分别为角A,B,C所对的边长.
(1)求证:B≤
;
(2)若
,且A为钝角,求A.
(本题满分12分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。

(1) 求证:CE⊥平面PAD;
(11)若PA=AB=1,AD=3,CD=
,∠CDA=45°,求四棱锥P-ABCD的体积
