(本小题满分12分)
设函数的单调减区间是(1,2)
⑴求的解析式;
⑵若对任意的,关于的不等式在
时有解,求实数的取值范围.
(本小题满分12分)
椭圆的离心率,过右焦点的直线与椭圆相交
于A、B两点,当直线的斜率为1时,坐标原点到直线的距离为
⑴求椭圆C的方程;
⑵椭圆C上是否存在点,使得当直线绕点转到某一位置时,有成
立?若存在,求出所有满足条件的点的坐标及对应的直线方程;若不存在,请说明理由.
(本小题满分12分)
某商品进货价每件50元,据市场调查,当销售价格(每件x元)为50<x≤80时,每
天售出的件数为,若要使每天获得的利润最多,销售价格每件应定为多少元?
(本小题满分12分)
如图,矩形中,,,为上的点,且,.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求三棱锥的体积.
(本小题满分12分)
已知在数列中,,,
(1) 证明:数列是等比数列; (2)求数列的前n项和。
(本小题满分10分)
已知的面积是30,内角、、所对边长分别为、、,.
(1)求;(2)若,求的值.