(本小题满分10分)选修4-1:几何证明选讲
如图所示,为⊙的切线,为切点,是
过点的割线,,,的平分
线与和⊙分别交于点和.
(I)求证:;
(II)求的值.
(本小题满分12分)
已知函数,其中.
(Ⅰ)求函数的单调区间;
(Ⅱ)若直线是曲线的切线,求实数的值;
(Ⅲ)设,求在区间上的最大值.(其中为自然对数的底数)
(本小题满分12分)
已知椭圆的长轴长为,且点在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)过椭圆右焦点的直线交椭圆于两点,若以为直径的圆过原点,
求直线方程.
(本小题满分12分)
设数列的前项和为,且 .
(1)求数列的通项公式;
(2)设,数列的前项和为,求证:.
(本小题满分12分)
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求的值及的表达式;
(Ⅱ)隔热层修建多厚对,总费用达到最小,并求最小值.
(本小题满分12分)
在分别是角A、B、C的对边,
,且
(1)求角B的大小;
(2)设的最小正周期为
上的最大值和最小值.