(本题11分)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)
(1)求抛物线的解析式
(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.
(3)如图3,抛物线上是否存在一点,过点作轴的垂线,垂足为,过点作直线,交线段于点,连接,使~,若存在,求出点的坐标;若不存在,说明理由.
图1 图2 图3
(本题11分)如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).
(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;
(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,求出S与t之间的函数关系式和相应的自变量t的取值范围;
(本题9分)已知全集,集合,
集合
(1)是否存在实数使,若存在,求出的值;若不存在,说明理由。
(2)设有限集合,则叫做集合的和,记做.若集合,集合的所有子集分别为求
(注:)
(本题共9分)如图,在△ACB中,∠ACB = 90°,AC = 4,BC = 2,点P为线段CA(不包括端点)上的一个动点,以为圆心,1为半径作.
(1)连结,若,试判断与直线AB的位置关系,并说明理由;
(2)当线段PC等于多少时,与直线AB相切?
(3)当与直线AB相交时,写出线段PC的取值范围。
(第(3)问直接给出结果,不需要解题过程)
(本题9分)
2011年3月10日,云南盈江县发生里氏5.8级地震。萧山金利浦地震救援队接到上级命令后立即赶赴震区进行救援。救援队利用生命探测仪在某建筑物废墟下方探测到点 C 处有生命迹象,已知废墟一侧地面上两探测点A、B 相距3米,探测线与地面的夹角分别是30°和 60°(如图),试确定生命所在点 C 的深度。(结果精确到0.1米,参考数据:)
(本题9分)某校课外兴趣小组从我市七年级学生中抽取2 000人做了如下问卷调查,将统计结果绘制了如下两幅统计图
根据上述信息解答下列问题:
(1)求条形统计图中n的值.
(2)如果每瓶饮料平均3元钱,“少喝2瓶以上”按少喝3瓶计算.
①求这2000名学生一个月少喝饮料能节省多少钱捐给希望工程?
②按上述统计结果估计,我市七年级6万学生一个月少喝饮料大约能节省多少钱捐给希望工程?