类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为恰当的是 ( )
①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.
A.① B.①② C.①②③ D.③
由数列1,10,100,1000,……猜测该数列的第项可能是( )
A. B. C. D.
复数等于 ( )
A.-1 B.1 C. D.
P()是平面上的一个点,设事件A表示“”,其中为实常数.
(1)若均为从0,1,2,3,4五个数中任取的一个数,求事件A发生的概率;
(2)若均为从区间[0,5)任取的一个数,求事件A发生的概率.
【解析】本试题考查了几何概型和古典概型结合的一道综合概率计算试题。首先明确区域中的所有基本事件数或者区域表示的面积,然后分别结合概率公式求解得到。
同学4人各写一张贺卡,先集中起来,然后每人从中任取一张贺卡;求下列条件的概率:
(1) 每人拿到的1张贺卡都是自己写的概率;
(2) 有且只有1个人拿到的贺卡是自己写的概率
【解析】本试题主要考查了古典概型的运用。解决该试题的关键是理解一次试验的所有基本事件数,然后结合事件A发生的事件数,利用比值可以得到概率值。
为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:请判断:谁参加这项重大比赛更合适,并阐述理由。
甲 |
27 |
38 |
30 |
37 |
35 |
31 |
乙 |
33 |
29 |
38 |
34 |
28 |
36 |
【解析】本试题考查了平均数和方差在实际中来衡量平均水平和稳定性的运用。