与终边相同的角是( )
A. B. C. D.
已知抛物线直线过抛物线的焦点且与该抛物线交于、两点(点A在第一象限)
(Ⅰ)若,求直线的方程;
(Ⅱ)过点的抛物线的切线与直线交于点,求证:。
【解析】本试题主要是考查了直线与抛物线的位置关系,利用联立方程组,结合韦达定理求解弦长和直线的方程,以及证明垂直问题。
已知椭圆+=1(a>b>0)上的点M (1, )到它的两焦点F1,F2的距离之和为4,A、B分别是它的左顶点和上顶点。
(Ⅰ)求此椭圆的方程及离心率;
(Ⅱ)平行于AB的直线l与椭圆相交于P、Q两点,求|PQ|的最大值及此时直线l的方程。
【解析】本试题主要是考查椭圆的方程和椭圆的几何性质,以及直线与椭圆的位置关系的综合运用。联立方程组,结合韦达定理求解和运算。
已知平面四边形的对角线交于点,,且,,.现沿对角线将三角形翻折,使得平面平面.翻折后: (Ⅰ)证明:;(Ⅱ)记分别为的中点.①求二面角大小的余弦值; ②求点到平面的距离
【解析】本试题主要考查了空间中点、线、面的位置关系的综合运用。以及线线垂直和二面角的求解的立体几何试题运用。
已知抛物线的顶点在坐标原点,它的准线经过双曲线:的一个焦点且垂直于的两个焦点所在的轴,若抛物线与双曲线的一个交点是.
(Ⅰ)求抛物线的方程及其焦点的坐标; (Ⅱ)求双曲线的方程及其离心率.
【解析】本试题主要考查了抛物线方程的求解,以及双曲线与抛物线的交点问题,和双曲线的几何性质的综合求解和运用。
三棱柱中,分别是、上的点,且,。设,,.
(Ⅰ)试用表示向量;
(Ⅱ)若,,,求MN的长.。
【解析】本试题主要考查运用向量的基本定理表示向量,并且运用向量能求解长度问题。