已知是正数组成的数列,,且点在函数的图象上.
(1)求数列的通项公式;
(2)若列数满足,,求证:
在三棱锥中,和都是边长为的等边三角形,,分别是的中点.
(1)求证:平面;
(2)求证:平面⊥平面;
(3)求三棱锥的体积.
为了了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.
(1)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;
(2)求调查中随机抽取了多少个学生的百米成绩;
(3)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.
已知平面直角坐标系上的三点,,(),且与共线.
(1)求;
(2)求的值.
几何证明选讲选做题)已知是圆的切线,切点为,直线交圆于两点,,,则圆的面积为 .
(坐标系与参数方程选做题)过点且平行于极轴的直线的极坐标方程为_ _.