用数学归纳法证明
时,由的假设到证明时,等式左边应添加的式子是 .
观察式子,,,则可以归纳出 ___.
已知复数(是虚数单位),则= ___.
函数的定义域为,且满足对于任意,有.
⑴求的值;
⑵判断的奇偶性并证明;
⑶如果≤,且在上是增函数,求的取值范围.
【解析】(Ⅰ) 通过赋值法,,求出f(1)0;
(Ⅱ) 说明函数f(x)的奇偶性,通过令,得.令,得,推出对于任意的x∈R,恒有f(-x)=f(x),f(x)为偶函数.
(Ⅲ) 推出函数的周期,根据函数在[-2,2]的图象以及函数的周期性,即可求满足f(2x-1)≥12的实数x的集合.
已知函数
⑴若的定义域和值域均是,求实数的值;
⑵若在上是减函数,且对任意的,总有≤,求实数的取值范围.
【解析】(1)先对函数配方,找出对称轴,明确单调性,再利用函数最值求解.
(2)在(1)的基础上,由a≥2,明确对称轴x=a∈[1,1+a]且(a+1)-a≤a-1,从而明确了单调性,再求最值.利用绝对值的性质,即得结果.
某上市股票在30天内每股的交易价格(元)与时间(天)所组成的有序数对落在下图中的两条线段上,该股票在30天内的日交易量(万股)与时间(天)的部分数据如下表所示.
第t天 |
4 |
10 |
16 |
22 |
Q(万股) |
36 |
30 |
24 |
18 |
⑴根据提供的图象,写出该种股票每股交易价格(元)与时间(天)所满足的函数关系式;
⑵根据表中数据确定日交易量(万股)与时间(天)的一次函数关系式;
⑶在(2)的结论下,用(万元)表示该股票日交易额,写出关于的函数关系式,并求这30天中第几天日交易额最大,最大值为多少?
【解析】(1)根据图象可知此函数为分段函数,在(0,20]和(20,30]两个区间利用待定系数法分别求出一次函数关系式联立可得P的解析式;
(2)因为Q与t成一次函数关系,根据表格中的数据,取出两组即可确定出Q的解析式;
(3)根据股票日交易额=交易量×每股较易价格可知y=PQ,可得y的解析式,分别在各段上利用二次函数求最值的方法求出即可.