已知, 则导数( )
A. B. C. D.0
由下列不等式:,你能得到一个怎样的一般不等式?并加以证明.
【解析】根据观察得出一般不等式,然后用数学归纳法证明,注意放缩法的应用.
已知四棱锥的底面为直角梯形,,底面,且,,是的中点。
(1)证明:面面;
(2)求与所成的角;
(3)求面与面所成二面角的余弦值.
【解析】(1)利用面面垂直的性质,证明CD⊥平面PAD.
(2)建立空间直角坐标系,写出向量与的坐标,然后由向量的夹角公式求得余弦值,从而得所成角的大小.
(3)分别求出平面的法向量和面的一个法向量,然后求出两法向量的夹角即可.
已知的展开式中第3项的系数与第5项的系数之比为.
(1)求的值;(2)求展开式中的常数项.
【解析】(1)利用二项展开式的通项公式求出展开式的通项,求出展开式中第3项与第5项的系数列出方程求出n的值.
(2)将求出n的值代入通项,令x的指数为0求出r的值,将r的值代入通项求出展开式的常数项.
用数学归纳法证明:
.
【解析】首先证明当n=1时等式成立,再假设n=k时等式成立,得到等式
,
下面证明当n=k+1时等式左边
,
根据前面的假设化简即可得到结果,最后得到结论.
如图,在正方体中,是棱的中点,在棱上.
且,若二面角的余弦值为,求实数的值.
【解析】以A点为坐标原点,AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,设正方体的棱长为4,分别求出平面C1PQ法向量和面C1PQ的一个法向量,然后求出两法向量的夹角,建立等量关系,即可求出参数λ的值.