(本小题共13分)已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且△是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线交椭圆于,两点, 且使点为△的垂心(垂心:三角形三边高线的交点)?若存在,求出直线的方程;若不存在,请说明理由.
(本小题共13分)已知函数,其中.
(Ⅰ)求证:函数在区间上是增函数;
(Ⅱ)若函数在处取得最大值,求.
(本小题共14分)如图,在四棱锥中,底面为菱形,,为的中点,.
(Ⅰ)求证:平面;
(Ⅱ)点在线段上,,试确定的值,使平面;
(Ⅲ)若平面,平面平面,求二面角的大小.
(本小题共13分)在等差数列中,,其前项和为,等比数列的各项均为正数,,公比为,且, .
(Ⅰ)求与;
(Ⅱ)证明:≤.
(本小题共13分)已知△中,角,,的对边分别为,,,且,.
(Ⅰ)若,求;
(Ⅱ)若,求△的面积.
已知不等式,若对任意且,该不等式恒成立,则实数的取值范围是 .