对于集合M,定义函数对于两个集合M,N,定义集合. 已知,.
(Ⅰ)写出和的值,并用列举法写出集合;
(Ⅱ)用Card(M)表示有限集合M所含元素的个数,求的最小值;
(Ⅲ)有多少个集合对(P,Q),满足,且?
在平面直角坐标系中,椭圆的中心为坐标原点,左焦点为, 为椭圆的上顶点,且.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线:与椭圆交于,两点,直线:()与椭圆交于,两点,且,如图所示.
(ⅰ)证明:;
(ⅱ)求四边形的面积的最大值.
已知函数.
(Ⅰ)求的单调区间;
(Ⅱ)是否存在实数,使得函数的极大值等于?若存在,求出的值;若不存在,请说明理由.
某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.
(Ⅰ)求直方图中的值;
(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;
(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为,求的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)
在四棱锥中,//,,,平面,.
(Ⅰ)设平面平面,求证://;
(Ⅱ)求证:平面;
(Ⅲ)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.
在中,角,,的对边分别为,且,, 成等差数列.
(Ⅰ)若,,求的值;
(Ⅱ)设,求的最大值.