(本小题满分12分)
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上各取两个点,将其坐标记录于下表中:
3 |
2 |
4 |
||
0 |
4 |
[ |
⑴求的标准方程;
⑵是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.
(本小题满分12分)如图,在底面为直角梯形的四棱锥中,,,,.
⑴求证:;
⑵当时,求此四棱锥的表面积.
(本小题满分12分)
已知数列满足,.
⑴求证:数列是等比数列,并写出数列的通项公式;
⑵若数列满足,求数列的前n项和.
(本小题满分12分)
已知函数.
⑴求函数的最小正周期;
⑵在给定的坐标系内,用“五点作图法”画出函数在一个周期内的图象.
给出下列四个命题:
①,使得;
②设,则,必有;
③设,则函数是奇函数;
④设,则.
其中正确的命题的序号为___________(把所有满足要求的命题序号都填上)
曲线在点处的切线平行于直线,则点的坐标为 .