(本小题满分10分)选修4-5:不等式选讲.
已知函数
⑴解不等式;
⑵若不等式的解集为空集,求的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程选讲.
在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为.
⑴求圆C的极坐标方程;
⑵是圆上一动点,点满足,以极点O为原点,以极轴为x轴正半轴建立直角坐标系,求点Q的轨迹的直角坐标方程.
(本小题满分10分)选修4-1:几何证明选讲.如图,⊙O内切△ABC的边于D、E、F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.
⑴证明:圆心O在直线AD上;
⑵证明:点C是线段GD的中点.
(本小题满分12分)
已知定义在正实数集上的函数,,其中.设两曲线,有公共点,且在该点处的切线相同.
⑴用表示,并求的最大值;
⑵求的极值.
(本小题满分12分)
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上各取两个点,将其坐标记录于下表中:
3 |
2 |
4 |
||
0 |
4 |
[ |
⑴求的标准方程;
⑵是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.
(本小题满分12分)如图,在底面为直角梯形的四棱锥中,,,,.
⑴求证:;
⑵当时,求此四棱锥的表面积.