已知数列{bn}是等差数列, b1=1, b1+b2+b3+…+b10=100.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{an}的通项记Tn是数列{an}的前n项之积,即Tn= b1·b 2·b 3…bn,试证明:
如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(a,b)(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动)
(Ⅰ)求某个家庭得分为(5,3)的概率;
(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.求某个家庭获奖的概率;
(Ⅲ)若共有5个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为X,求X的分布列及数学期望.
如图,四棱锥P-ABCD中,底面ABCD为平行四边形,AB=2AD=2,BD=,PD⊥底面ABCD.
(1)证明:平面PBC⊥平面PBD;
(2)若二面角P-BC-D为,求AP与平面PBC所成角的正弦值.
已知向量
(Ⅰ)求f(x)的最小正周期T;
(Ⅱ)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,上的最大值,求A,b和△ABC的面积.
下列结论中正确的是 .
①函数y=f(x)是定义在R上的偶函数,且f(x+1)=- f(x),则函数y=f(x)的图像关于直线x=1对称;
②
③
④线性相关系数r的绝对值越接近于1,表明两个变量线性相关程度越弱.
已知点C为y2=2px(p>0)的准线与x轴的交点,点F为焦点,点A、B为抛物线上两个点,若的夹角为 .