(本题满分16分)
已知函数
(I)当a=2时,求函数的最大值和最小值;
(II)若函数,求函数的单调递减区间;
(III)当a=1时,求证:
(本题满分16分)
如图为河岸一段的示意图,一游泳者站在河岸的A点处,欲前往河对岸的C点处。若河宽BC为100m,A、B相距100m,他希望尽快到达C,准备从A步行到E(E为河岸AB上的点),再从E游到C。已知此人步行速度为v,游泳速度为0.5v。
(I)设,试将此人按上述路线从A到C所需时间T表示为的函数;并求自变量 取值范围;
II)当为何值时,此人从A经E游到C所需时间T最小,其最小值是多少?
(本题满分14分)
定义在R上的单调函数满足,且对任意都有
(I)试求的值并证明函数为奇函数;
(II)若对任意恒成立,求实数m的取值范围。
(本题满分14分)
已知函数
(I)求的最大值和最小正周期;
(II)若,求的值。
(本题满分14分)
已知集合函数的定义域为集合B。
(I)若,求集合;
(II)已知是“”的必要条件,求实数a的取值范围。
设二次函数的值域为,且,则的最大值是 。