已知数列是等比数列,且,则( )
A.1 B.2
C.4 D.8
“sin x=1”是 “cos x=0”的( )
(A) 充分而不必要条件 (B) 必要而不充分条件
(C) 充分必要条件 (D) 既不充分也不必要条件
已知i为虚数单位,则=( )
(A) 1+3i (B) 1-3i
(C) 3-i (D) 3+i
已知集合A={x|x2-x≤0}, B={x|0<x<3} 则A∩B= ( )A.{x|0≤x≤1} B.{x|0<x<3} C. D.{x|0<x≤1}
设函数 f (x)=ax-lnx-3(a∈R),g(x)=xe1-x.
(Ⅰ)若函数 g(x) 的图象在点 (0,0) 处的切线也恰为 f (x) 图象的一条切线,求实数 a的值;
(Ⅱ)是否存在实数a,对任意的 x∈(0,e],都有唯一的 x0∈[e-4,e],使得 f (x0)=g(x) 成立.若存在,求出a的取值范围;若不存在,请说明理由.
注:e是自然对数的底数.
已知椭圆C:(a>0,b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切.又设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连结PB交椭圆C于另一点E.
(Ⅰ)求椭圆C的方程;
(Ⅱ)证明:直线AE与x轴相交于定点Q;
(III)求的取值范围.