(本小题满分12分)已知函数f(x)=x3+x2-2.
(1)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(an,an+12-2an+1)(n∈N*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;
(2)求函数f(x)在区间(a-1,a)内的极值.
(本小题满分12分已知二次函数f(x) 对任意x∈R,都有f (1-x)=f (1+x)成立,设向量a=(sinx,2), b=(2sinx,),
c=(cos2x,1),d=(1,2)。
(1)分别求a·b和c·d的取值范围;
(2)当x∈[0,π]时,求不等式f(a·b)>f(c·d)的解集.
(本小题满分12分)已知向量a=(cosx,2),b=(sinx,-3).
(1)当a∥b时,求3cos2x-sin2x的值;
(2)求函数f(x)=(a-b)·a在x∈[-,0]上的值域.
(文) (本小题满分12分) 已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2、a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=log2an+1,Sn是数列{bn}的前n项和,求使Sn>42+4n成立的n的最小值.
(本小题满分12分)
已知数列{an}的前n项和Sn=12n-n2,求数列{|an|}的前n项和Tn.
剖析:由Sn=12n-n2知Sn是关于n的无常数项的二次函数(n∈N*),可知{an}为等差数列,求出an,然后再判断哪些项为正,哪些项为负,最后求出Tn.
(文) (本小题满分12分已知函数,
(1)求函数的值域和最小正周期;
(2)求函数的递减区间;