如图,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中点O为球心、BD为直径的球面交PD于点M.
⑴求证:平面ABM⊥平面PCD;
⑵求直线PC与平面ABM所成角的正切值;
⑶求点O到平面ABM的距离.
如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF//AC,AB=,
CE=EF=1
⑴求证:AF//平面BDE
⑵求证:CF⊥平面BDE
已知
⑴若,求的值
⑵若,求的值
如图A1A是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A、B的任一点,AA1=AB=2
⑴求证:BC⊥平面A1AC
⑵求三棱锥A1—ABC体积的最大值
已知半径为2cm的半圆形铁皮,用它做成一个圆锥形容器的侧面
⑴求这个圆锥的体积
⑵经过它的侧面,用细绳把A、B连接起来,
则细绳至少要多长?(AB为圆锥底面圆的直径)
已知,
⑴若,求
⑵若(其中O为坐标原点),求