满分5 > 高中数学试题 >

设函数, (Ⅰ)求的定义域; (Ⅱ)求的单调增区间和减区间; (Ⅲ) 求所有实数...

设函数说明: 6ec8aac122bd4f6e说明: 6ec8aac122bd4f6e

(Ⅰ)求6ec8aac122bd4f6e的定义域; (Ⅱ)求6ec8aac122bd4f6e的单调增区间和减区间;

(Ⅲ) 求所有实数说明: 6ec8aac122bd4f6e,使说明: 6ec8aac122bd4f6e说明: 6ec8aac122bd4f6e恒成立.

 

(Ⅰ)定义域:   (2)所以的增区间为,减区间为  (3) 【解析】(I)根据对数函数的定义域为. (II)求导根据导数大于零求增区间,导数小于零求减区间。 (III) 对恒成立,转化为,然后再利用导数确定f(x)的最值即可. (Ⅱ)【解析】 因为,’所以’ 由于,所以的增区间为,减区间为           8分   (Ⅲ) 证明:,由已知,,即, 由(Ⅰ)知内单调递增,   要使恒成立, 只要,解得
复制答案
考点分析:
相关试题推荐

)如图,在正三棱柱ABC—A1B1C1中,AB=6ec8aac122bd4f6eAA1,点D是A1B1的中点,点F是AB的中点,点E在A1C1上,且DE⊥AE。

(1)证明B1F//平面ADE;

(2)证明平面ABC1⊥平面C1DF;

(3)求直线AD和平面ABC1所成角的正弦值。

说明: 6ec8aac122bd4f6e

 

查看答案

为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

性别

是否需要志愿者

需要

40

30

不需要

160

270

(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?

(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人的比例?说明理由.

 

查看答案

试比较下列各式的大小(不写过程)

(1)6ec8aac122bd4f6e6ec8aac122bd4f6e             

(2)6ec8aac122bd4f6e6ec8aac122bd4f6e

通过上式请你推测出6ec8aac122bd4f6e6ec8aac122bd4f6e且n6ec8aac122bd4f6e的大小,并用分析法加以证明。

 

查看答案

假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

若由资料可知y对x呈线性相关关系。试求:

(1)线性回归方程;        

(2)估计使用年限为10年时,维修费用是多少?

 

查看答案

已知复数z=(2+i)(i-3)+4-2i;

(1)求复数z的共轭复数6ec8aac122bd4f6e及|6ec8aac122bd4f6e|;

(2)设复数z1=(a2-2a)+ai是纯虚数,求实数a的值

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.