如图所示,椭圆中心在坐标原点,F为左焦点,当⊥时,其离心率为,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于( )
A. B. C.-1 D. +1
用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n·1·3·…·(2n-1)(n∈N*)时,从n=k到n=k+1,左端需要增加的代数式为( )
A.2k+1 B.2(2k+1) C. D.
对正整数,设曲线在处的切线与轴交点的纵坐标为,则数列的前项和的公式是( )
A. B. C. D.
设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是( )
A.(-3,0)∪(3,+∞) B.(-3,0)∪(0,3)
C.(-∞,-3)∪(0,3) D.(-∞,-3)∪(3,+∞)
设是函数的导函数,将和的图象画在同一个直角坐标系中,不可能正确的是( )
从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有 ( )
A、140种 B、80种 C、70种 D、35种