已知数列的首项,,
(1)求证数列是等比数列;
(2)求数列的前项和.
【解析】本试题主要是考察了数列的概念,等比数列的定义,错位相减法求解数列的和的重要数列的思想的运用。
某奇石厂为适应市场需求,投入98万元引进我国先进设备,并马上投入生产.第一年需各种费用12万元,从第二年开始,每年所需费用会比上一年增加4万元.而每年因引入该设备可获得年利润为50万元.请你根据以上数据,解决以下问题:
(1)引进该设备多少年后,该厂开始盈利?
(2)引进该设备若干年后,该厂提出两种处理方案:
第一种:年平均利润达到最大值时,以26万元的价格卖出.
第二种:盈利总额达到最大值时,以8万元的价格卖出.问哪种方案较为合算?
【解析】本试题主要考查了运用函数的思想,求解实际生活中的利润的最大值的运用。关键是设变量,表示利润函数。
在△中,分别为内角的对边,且.
(1)求角的大小;
(2)若+=,试判断△的形状.
【解析】本试题主要考查了解三角形中正弦定理和余弦定理的运用。求解变和角,并定形的问题。
(1)求的最大值,并求取最大值时相应的的值.
(2)若,求的最小值.
【解析】本试题主要是考查了不等式的最值思想,以及运用均值不等式求解最值的问题。
在递增等差数列()中,已知,是和的等比中项.
(1)求数列的通项公式;
(2)设数列的前项和为,求使时的最小值.
【解析】本试题主要考查了数列通项公式的求解以及前n项和公式的运用。并求解最值。
在△中,分别为内角的对边,且△的面积为15,求边 的长.
【解析】本试题主要考查了解三角形的运用,求解三角形的边长和面积的运算。