在极坐标系中,圆:和直线相交于、两点,求线段的长
【解析】本试题主要考查了极坐标系与参数方程的运用。先将圆的极坐标方程圆: 即 化为直角坐标方程即
然后利用直线 即,得到圆心到直线的距离,从而利用勾股定理求解弦长AB。
【解析】
分别将圆和直线的极坐标方程化为直角坐标方程:
圆: 即 即 ,
即, ∴ 圆心, ---------3分
直线 即, ------6分
则圆心到直线的距离,----------8分
则 即所求弦长为
如图,已知⊙中,直径垂直于弦,垂足为,是延长线上一点,切⊙于点,连接交于点,证明:
【解析】本试题主要考查了直线与圆的位置关系的运用。要证明角相等,一般运用相似三角形来得到,或者借助于弦切角定理等等。根据为⊙的切线,∴为弦切角
连接 ∴…注意到是直径且垂直弦,所以 且…利用,可以证明。
解:∵为⊙的切线,∴为弦切角
连接 ∴……………………4分
又∵ 是直径且垂直弦 ∴ 且……………………8分
∴ ∴
函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内的极小值点有 个
若三边长分别为、、,内切圆的半径为,则的面积,类比上述命题猜想:若四面体四个面的面积分别为、、、,内切球的半径为,则四面体的体积
圆柱形容器内部盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 _____cm.
已知,为极点,求使是正三角形的点的极坐标为_______ __