(A) (B) (C) (D)
已知 , ,,则与的夹角是
(A) (B) (C) (D)
已知 ,,则角的终边在第 象限
(A) 一 (B) 二 (C) 三 (D) 四
(A) (B) (C) (D)
已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.
(1)求函数f(x)的表达式;
(2)若数列{an}满足a1=,an+1=f(an),bn=-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;
(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】【解析】
(1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=-1, ∴===,
∴{bn}为等比数列,q=.又∵a1=,∴b1=-1=,
bn=b1qn-1=n-1=n(n∈N*).……………………………9分
(3)证明:∵anbn=an=1-an=1-=,
∴a1b1+a2b2+…+anbn=++…+<++…+
==1-<1(n∈N*).
解关于的不等式:
【解析】【解析】
当时,原不等式可变为,即 (2分)
当时,原不等式可变为 (5分) 若时,的解为 (7分)
若时,的解为 (9分) 若时,无解(10分) 若时,的解为 (12分综上所述
当时,原不等式的解为
当时,原不等式的解为
当时,原不等式的解为
当时,原不等式的解为
当时,原不等式的解为: