如图,已知椭圆的离心率为,且经过点平行于的直线在轴上的截距为,与椭圆有A、B两个
不同的交点
(Ⅰ) 求椭圆的方程;
(Ⅱ) 求的取值范围;
(III)求证:直线、与轴始终围成一个等腰三角形.
若数列的前项和为:;
(Ⅰ) 求数列的通项公式;
(Ⅱ) 设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求出的最小值,若不存在,请说明理由.
如图(1),是等腰直角三角形,,、分别为、的中点,将沿折起,使在平面上的射影恰为的中点,得到图(2).
(Ⅰ)求证:; (Ⅱ)求三棱锥的体积.
通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表:
性别与看营养说明列联表 单位: 名
|
男 |
女 |
总计 |
看营养说明 |
50 |
30 |
80 |
不看营养说明 |
10 |
20 |
30 |
总计 |
60 |
50 |
110 |
(I)从这50名女生中按是否看营养说明采取分层抽样,抽取一个容量为的样本,问样本中看与不看营养说明的女生各有多少名?
(Ⅱ) 从(I)中的5名女生样本中随机选取两名作深度访谈, 求选到看与不看营养说明的女生各一名的概率;
(III)根据以上列联表,问有多大把握认为“性别与在购买食物时看营养说明”有关?
在中,内角对边的边长分别是,已知,.
(Ⅰ)若,求;
(Ⅱ)若,求的面积.
一个正整数数表如下(表中下一行中的数的个数是上一行中数的个数的2倍):
第1行 |
1 |
第2行 |
2 3 |
第3行 |
4 5 6 7 |
… |
… |
则第9行中的第5个数是