如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F.
(1)证明 平面;
(2)证明平面EFD;
(3)求二面角的大小.
【解析】本试题主要考查了立体几何中线面平行的判定,线面垂直的判定,以及二面角的求解的综合运用试题。体现了运用向量求解立体几何的代数手法的好处。
已知直线经过点,倾斜角,
(1)写出直线的参数方程。
(2)设与圆相交与两点,求点到两点的距离之积。
【解析】本试题主要是考查了直线与圆的位置关系的运用,利用直线的参数方程,求解距离之积,这个体现了直线参数方程中t的几何意义的作用的重要性。
点在椭圆上,求点到直线的最大距离和最小距离。
【解析】本试题主要考查了椭圆上点到直线距离的最大值和最小值问题的运用。运用参数方程解比较方便。
在正方体中,如图E、F分别是 ,CD的中点,
(1)求证:平面ADE;
(2)cos.
【解析】本试题主要考查了运用空间向量进行求证垂直问题和求解向量的夹角的余弦值的简单运用.
命题:已知a、b为实数,若x2+ax+b≤0 有非空解集,则a2- 4b≥0.写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假。
【解析】本试题主要考查了命题以及命题间关系的运用。理解四种命题的概念并能借助于条件和结论表示出来是关键,。
直线过定点_____________。