已知圆的方程为且与圆相切.
(1)求直线的方程;
(2)设圆与轴交于两点,M是圆上异于的任意一点,过点且与轴垂直的直线为,直线交直线于点P’,直线交直线于点Q’
求证:以P’Q’为直径的圆总过定点,并求出定点坐标.
已知函数在上是增函数,若不等式对于任意恒成立,求实数的取值范围。
将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为.
(1)求直线与圆相切的概率;
(2)将的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
如图,在四棱锥O—ABCD中,底面ABCD是边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点。
(1)证明:直线MN∥平面OCD;
(2)求异面直线AB与MD所成角的大小;
统计局就某地居民的月收入情况调查了10 000人,并根据所得数据画了样本频率分布直方图,每个分组包括左端点,不包含右端点,如第一组表示收入在元之间。
(1)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在的应抽取多少人;
(2)根据频率分布直方图估计样本数据的中位数;
(3)根据频率分布直方图估计样本数据的平均数.
某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,用茎叶图分别记录抽查数据如下:
(1)分别求出甲、乙两组数据的中位数
(2)估计哪个车间的产品平均重量较高,哪个车间比较稳定?