设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球放入5个盒子内. (答题要求:先列式,后计算)
(1)恰有一个盒子空着,共有多少种投放方法?
(2)每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?
已知函数 ()
(1)若函数的图象在处的切线方程为,求的值;
(2)若函数在为增函数,求的取值范围.
设,函数,若对任意的,都有成立,则的取值范围为 .
将侧棱相互垂直的三棱锥称为“直角三棱锥”,三棱锥的侧面和底面分别叫直角三棱锥的“直角面和斜面”;过三棱锥顶点及斜面任两边中点的截面均称为斜面的“中面”.已知直角三角形具有性质:“斜边的中线长等于斜边边长的一半”.仿照此性质写出直角三棱锥具有的性质: .
如图,有一个圆环型花圃,要在花圃的6个部分栽种4种不同颜色的花,每部分栽种1种,且相邻部分栽种不同颜色的花,则不同的栽种方法有 种.
若函数在区间上有最小值,则实数的取值范围是 .