在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,.(Ⅰ)求an 与bn;(Ⅱ)设数列{cn}满足,求{cn}的前n项和Tn.
【解析】本试题主要是考查了等比数列的通项公式和求和的运用。第一问中,利用等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通项公式故an=3+3(n-1)=3n, bn=3 n-1. 第二问中,,由第一问中知道,然后利用裂项求和得到Tn.
【解析】
(Ⅰ) 设:{an}的公差为d,
因为解得q=3或q=-4(舍),d=3.
故an=3+3(n-1)=3n, bn=3 n-1. ………6分
(Ⅱ)因为……………8分
已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量
(Ⅰ)求角A的大小;
(Ⅱ)若,试判断b·c取得最大值时△ABC形状.
【解析】本试题主要考查了解三角形的运用。第一问中利用向量的数量积公式,且由
(2)问中利用余弦定理,以及,可知,并为等边三角形。
【解析】
(Ⅰ)
………………………………6分
(Ⅱ)
………………………………8分
……………10分
已知f(1,1)=1,f(m,n)∈N*(m、n∈N*),且对任意m、n∈N*都有:
① f(m,n+1)= f(m,n)+2; ② f(m+1,1)=2 f(m,1).
给出以下三个结论:(1)f(1,5)=9;(2)f(5,1)=16;(3)f(5,6)=26.
其中正确的个数为
的一个焦点F作一条渐近线的垂线,若垂足恰在线段OF(O为原点)的垂直平分线上,则双曲线的离心率为 .
在等比数列{an}中,an>0(n∈N*),且a6-a4=24,a3a5=64,则{an}的前6项和是 .
.