如图,在正三角形中,分别为各边的中点,分别为的中点,将沿折成正四面体,则四面体中异面直线与所成的角的余弦值为 .
在中,若,则外接圆半径.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为,则其外接球的半径=
已知实数的最小值为
已知向量和的夹角为,,则
已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大(柱体体积=底面积高)时,其高的值为( )
A. B. C. D.
设,当0时,恒成立,则实数的取值范围是( )
A.(0,1) B. C. D.