已知,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
设, ,函数的定义域为,则( )
A. B. C. D.
如图,在直三棱柱中,底面为等腰直角三角形,,为棱上一点,且平面平面.
(Ⅰ)求证:点为棱的中点;
(Ⅱ)判断四棱锥和的体积是否相等,并证明。
【解析】本试题主要考查了立体几何中的体积问题的运用。第一问中,
易知,面。由此知:从而有又点是的中点,所以,所以点为棱的中点.
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D为BB1中点,可以得证。
(1)过点作于点,取的中点,连。面面且相交于,面内的直线,面。……3分
又面面且相交于,且为等腰三角形,易知,面。由此知:,从而有共面,又易知面,故有从而有又点是的中点,所以,所以点为棱的中点. …6分
(2)相等.ABC-A1B1C1为直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D为BB1中点,∴VA1-B1C1CD=VC-A1ABD
已知等差数列前项和为,且
(Ⅰ)求数列的通项公式;
(Ⅱ)令()求数列前项和为
【解析】本试题主要考查了数列的通项公式和前n项和的运用。第一问由
,可得首项和公差,然后得到
(2)利用第一问中的的结论得到,分组求和可知
在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等。
(1)求取出的两个球上标号为相邻整数的概率;
(2)求取出的两个球上标号之和能被3整除的概率.
【解析】本试题主要考查了古典概型概率的求解。第一问中,基本事件数为共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),
(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)
总数为16种.其中取出的两个小球上标号为相邻整数的基本事件有:
(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6种利用古典概型可知,P=3 /8 ;
(2)其中取出的两个小球上标号之和能被3整除的基本事件有:
(1,2),(2,1),(2,4),(3,3),(4,2)共5种可得概率值5 /16 ;
【解析】
甲、乙两个盒子里各取出1个小球计为(X,Y)则基本事件
共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),
(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)
总数为16种.
(1)其中取出的两个小球上标号为相邻整数的基本事件有:
(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6种
故取出的两个小球上标号为相邻整数的概率P=3 /8 ;
(2)其中取出的两个小球上标号之和能被3整除的基本事件有:
(1,2),(2,1),(2,4),(3,3),(4,2)共5种
故取出的两个小球上标号之和能被3整除的概率为5 /16 ;
如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点.现测得,并在点测得塔顶的仰角为, 求塔高(精确到,)
【解析】本试题主要考查了解三角形的运用,利用正弦定理在中,得到,然后在中,利用正切值可知
【解析】
在中,
由正弦定理得:,所以
在中,