在平面直角坐标系中, 落在一个圆内的曲线可以是
A. B.
C. D.
为了了解某学校2000名高中男生的身体发育情况,抽查了该校100名高中男生的体重情况.根据所得数据画出样本的频率分布直方图,据此估计该校高中男生体重在70~78kg的人数为
A.240 B.160 C.80 D.60
为虚数单位,则复数的虚部为
A. B. C. D.
已知集合,,则集合
A. B. C. D.
已知数列的前项和为,且 (N*),其中.
(Ⅰ) 求的通项公式;
(Ⅱ) 设 (N*).
①证明: ;
② 求证:.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于,
所以利用放缩法,从此得到结论。
【解析】
(Ⅰ)当时,由得. ……2分
若存在由得,
从而有,与矛盾,所以.
从而由得得. ……6分
(Ⅱ)①证明:
证法一:∵∴
∴
∴.…………10分
证法二:,下同证法一. ……10分
证法三:(利用对偶式)设,,
则.又,也即,所以,也即,又因为,所以.即
………10分
证法四:(数学归纳法)①当时, ,命题成立;
②假设时,命题成立,即,
则当时,
即
即
故当时,命题成立.
综上可知,对一切非零自然数,不等式②成立. ………………10分
②由于,
所以,
从而.
也即
已知各项都不为零的数列的前n项和为,,向量,其中N*,且∥.
(Ⅰ)求数列的通项公式及;
(Ⅱ)若数列的前n项和为,且(其中是首项,第四项为的等比数列的公比),求证:.
【解析】本试题主要考查了数列的通项公式和前n项和公式的运用。
(1)因为,对n=1, 分别求解通项公式,然后合并。利用,求解
(2)利用
裂项后求和得到结论。
【解析】
(1) ……1分
当时,……2分
()……5分
……7分
……9分
证明:当时,
当时,