已知椭圆的右焦点为,点在圆上任意一点(点第一象限内),过点作圆的切线交椭圆于两点、.
(1)证明:;
(2)若椭圆离心率为,求线段长度的最大值.
如图1,、是某地一个湖泊的两条互相垂直的湖堤,线段和曲线段分别是湖泊中的一座栈桥和一条防波堤.为观光旅游的需要,拟过栈桥上某点分别修建与、平行的栈桥、,且以、为边建一个跨越水面的三角形观光平台.建立如图2所示的直角坐标系,测得线段的方程是,曲线段的方程是,设点的坐标为,记(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度).
(1)求的取值范围;
(2)试写出三角形观光平台面积关于的函数解析式,并求出该面积的最小值.
在所有棱长都相等的斜三棱柱中,已知,,且,连接.
(1)求证:平面;
(2)求证:四边形为正方形.
设函数,其中,若,且图象的一条对称轴离一个对称中心的最近距离是.
(1)求函数的解析式;
(2)若是的三个内角,且,求的取值范围
各项为正数的数列,其前项的和为,且,若
,且数列的前项的和为,则 .
已知中,,为的外心,若点在所在的平面上,
,且,则边上的高的最大值为 .