学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设为选出的人中既会唱歌又会跳舞的人数,且.
(1)求文娱队的队员人数;
(2)写出的概率分布列并计算
在直角坐标系中,直线的参数方程为(为参数),若以直角坐标系 的点为极点,为极轴,且长度单位相同,建立极坐标系,得曲线的极坐标方程为.
(1)求直线的倾斜角;
(2)若直线与曲线交于两点,求
已知矩阵,向量.求向量,使得.
已知数列单调递增,且各项非负,对于正整数,若任意的,(≤≤≤),仍是中的项,则称数列为“项可减数列”.
(1)已知数列是首项为2,公比为2的等比数列,且数列是“项可减数
列”,试确定的最大值;
(2)求证:若数列是“项可减数列”,则其前项的和;
(3)已知是各项非负的递增数列,写出(2)的逆命题,判断该逆命题的真假,
并说明理由.
已知函数().
(1)若,在上是单调增函数,求的取值范围;
(2)若,求方程在上解的个数.
已知椭圆的右焦点为,点在圆上任意一点(点第一象限内),过点作圆的切线交椭圆于两点、.
(1)证明:;
(2)若椭圆离心率为,求线段长度的最大值.