设A、B为非空集合,定义集合A*B为如图非阴影部分表示的集合,若则A*B= ( )
A.(0,2) B.[0,1]∪[2,+∞)
C.(1,2] D.[0,1]∪(2,+∞)
在数列和中,,,,其中且,.设,,试问在区间上是否存在实数使得.若存在,求出的一切可能的取值及相应的集合;若不存在,试说明理由.
学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设为选出的人中既会唱歌又会跳舞的人数,且.
(1)求文娱队的队员人数;
(2)写出的概率分布列并计算
在直角坐标系中,直线的参数方程为(为参数),若以直角坐标系 的点为极点,为极轴,且长度单位相同,建立极坐标系,得曲线的极坐标方程为.
(1)求直线的倾斜角;
(2)若直线与曲线交于两点,求
已知矩阵,向量.求向量,使得.
已知数列单调递增,且各项非负,对于正整数,若任意的,(≤≤≤),仍是中的项,则称数列为“项可减数列”.
(1)已知数列是首项为2,公比为2的等比数列,且数列是“项可减数
列”,试确定的最大值;
(2)求证:若数列是“项可减数列”,则其前项的和;
(3)已知是各项非负的递增数列,写出(2)的逆命题,判断该逆命题的真假,
并说明理由.