已知指数函数,当时,有,解关于x的不等式
【解析】本试题主要考查了指数函数,对数函数性质的运用。首先利用指数函数,当时,有,,得到,从而
等价于,联立不等式组可以解得
【解析】
∵ 在时,有,
∴ 。
于是由,得,
解得, ∴ 不等式的解集为。
已知函数 f(x)=在[1,+∞)上为减函数,求实数a的取值范围.
【解析】本试题考查了导数在研究函数中的运用。根据函数f(x)=在[1,+∞)上为减函数,可知导函数在给定区间恒小于等于零,f ′(x)≤0在[1,+∞)上恒成立,lna≥1-lnx在[1,+∞)上恒成立.然后利用φ(x)=1-lnx,φ(x)max=1,从而得到a≥e
f ′(x)==,因为 f(x)在[1,+∞)上为减函数,故 f ′(x)≤0在[1,+∞)上恒成立,即lna≥1-lnx在[1,+∞)上恒成立.设φ(x)=1-lnx,φ(x)max=1,故lna≥1,a≥e,
已知函数,则的值是 .
已知,则一个符合条件的函数表达式为______
的值为 _____________
用“”从小到大排列,,,_______