已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q;
【解析】(1)离心率为得=,椭圆的短半轴为半径的圆与直线x-y+=0相切,b==,解得a2=4,b2=3;(Ⅱ)直线PB的方程为y=k(x-4)
学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球,这些球除颜色外完全相同。每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱)
(1)求在一次游戏中
①摸出3个白球的概率;②获奖的概率。
(2)求在两次游戏中获奖次数X的分布列及数学期望E(x)。
【解析】(1) ①摸出3个白球,只有甲箱摸2个白球,乙箱摸一个白球;②不少于2个包括2个白球或3个白球。(2)符合几何分别。
如图,已知四棱锥P-ABCD,底面ABCD为蓌形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点。
(Ⅰ)求证:AE⊥PD;
(Ⅱ)若直线PB与平面PAD所成角的正弦值为,求二面角E-AF-C的余弦值.
【解析】(Ⅰ)要证AE⊥PD ,先证AE⊥平面PAD,需要证明PA⊥AE,转化为证PA⊥平面ABCD;(Ⅱ)建立坐标系计算二面角E-AF-C的余弦值.
设数列{}的前n项和满足:=n-2n(n-1).等比数列{}的前n项和为,公比为,且=+2.
(1)求数列{}的通项公式;
(2)设数列{}的前n项和为,求证:≤<.
【解析】=+2求出,由=n-2n(n-1)递写一个式子相减,得{}为等差数列;(2)裂项法求,然后证明≤<.
关于有以下命题:
①若则; ②图象与图象相同;③在区间上是减函数; ④图象关于点对称。
其中正确的命题是 。
已知曲线在点()处的切线斜率为-2,且是的极值点,则a-b= .