如图,两矩形ABCD、ABEF所在平面互相垂直,DE与平面ABCD及平面所成角分别为300、450, M、N分别为DE与DB的中点,且MN=1.
(Ⅰ)求证:MN⊥平面ABCD;
(Ⅱ)求线段AB的长.
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数;
(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由.
函数,,的一部分图像如图所示,其中,为图像上的两极值点.
(Ⅰ)求的值;
(Ⅱ)设,其中与坐标原点重合,求的值.
请阅读下列材料:若两个正实数满足,那么.证明:构造函数,因为对一切实数,恒有,所以,从而得,所以.根据上述证明方法,若个正实数满足时,你能得到的结论为 .(不必证明)
右图是某四棱锥的三视图,则该四棱锥的体积为____________________.
已知双曲线的一条渐近线方程是,它的一个焦点与抛物线的焦点相同.则双曲线的方程为 .