曲线( )
A、 B、
C、 D、
设集合,,则等于( )
A. B. C. D.
复数,则实数的值是( ).
A. B. C. D.
已知在数列{an}中,(t>0且t≠1).是函数的一个极值点.
(1)证明数列是等比数列,并求数列的通项公式;
(2)记,当t=2时,数列的前n项和为Sn,求使Sn>2012的n的最小值;
(3)当t=2时,是否存在指数函数g(x),使得对于任意的正整数n有成立?若存在,求出满足条件的一个g(x);若不存在,请说明理由.
已知椭圆的离心率为,其左、右焦点分别为,点是椭圆上一点,且,(为坐标原点).
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且斜率为的动直线交椭圆于两点,在轴上是否存在定点,使以为直径的圆恒过这个点?若存在,求出的坐标,若不存在,说明理由.
长沙市“两会”召开前,某政协委员针对自己提出的“环保提案”对某处的环境状况进行了实地调研.据测定,该处的污染指数与附近污染源的强度成正比,与到污染源的距离成反比,比例常数为k(k>0).现已知相距36 km的A,B两家化工厂(污染源)的污染强度分别为正数a,b,它们连线上任意一点C处的污染指数y等于两化工厂对该处的污染指数之和.设AC=x(km).
(Ⅰ) 试将y表示为x的函数;
(Ⅱ) 若a=1时,y在x=6处取得最小值,试求b的值.