选修4-4:坐标系与参数方程
平面直角坐标系中,已知曲线,将曲线上所有点横坐标,纵坐标分别伸长为原来的倍和倍后,得到曲线
(1)试写出曲线的参数方程;
(2)在曲线上求点,使得点到直线的距离最大,并求距离最大值.
选修4-1:几何证明选讲
如图,△内接于⊙,,直线切⊙于点,弦,相交于点.
(1)求证:△≌△;
(2)若,求长.
设函数
(1)当时,求函数的最大值;
(2)令,()其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围;
(3)当,,方程有唯一实数解,求正数的值.
已知圆及点,在圆上任取一点,连接,做线段的中垂线交直线于点.
(1)当点在圆上运动时,求点的轨迹的方程;
(2)设轨迹与轴交于两点,在轨迹上任取一点,直线分别交轴于两点,求证:以线段为直径的圆过两个定点,并求出定点坐标.
如图,斜三棱柱的底面是直角三角形,,点在底面内的射影恰好是的中点,且.
(1)求证:平面平面;
(2)若二面角的余弦值为,设,求的值.
要从甲,乙两名运动员中选拔一人参加2012年伦敦奥运会跳水项目,对甲乙两人进行培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得出成绩茎叶图如图所示.
(1)从平均成绩及发挥稳定性的角度考虑,你认为选派哪名运动员更合适?
(2)若将频率视为概率,对甲运动员在今后3次的比赛成绩进行预测,记这3次成绩中高于80分的次数为,求的分布列及数学期望.