(本题满分10分)某重点高校数学教育专业的三位毕业生甲、乙、丙参加了一所中学的招聘面试,面试合格者可以正式签约,毕业生甲表示只要面试合格就签约,毕业生乙和丙则约定:两人面试都合格就一同签约,否则两人都不签约,设每人面试合格的概率都是,且面试是否合格互不影响,求:
(1)至少有1人面试合格的概率;(2)签约人数X的分布列.
(本题满分10 分)已知函数f(x)=x3-ax2+3x.
(1) 若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值和最小值.
(2) 若f(x)在x∈[1,+∞)上是增函数,求实数a的取值范围;
(本题满分9分)设复数满足,且是纯虚数,求.
若存在过点的直线与曲线和都相切,则
抛物线与直线所围成的图形的面积为。
设S、V分别表示面积和体积,如△ABC面积用S△ABC表示,三棱锥O-ABC的体积用VO-ABC表示.对于命题:如果O是线段AB上一点,则||·+||·=.将它类比到平面的情形是:若O是△ABC内一点,有S△OBC·+S△OCA·+S△OBA·=.将它类比到空间的情形应该是:若O是三棱锥A-BCD内一点,则有___________________________