若且,则x是 ( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
已知正项数列的前n项和满足:,
(1)求数列的通项和前n项和;
(2)求数列的前n项和;
(3)证明:不等式 对任意的,都成立.
【解析】第一问中,由于所以
两式作差,然后得到
从而得到结论
第二问中,利用裂项求和的思想得到结论。
第三问中,
又
结合放缩法得到。
【解析】
(1)∵ ∴
∴
∴ ∴ ………2分
又∵正项数列,∴ ∴
又n=1时,
∴ ∴数列是以1为首项,2为公差的等差数列……………3分
∴ …………………4分
∴ …………………5分
(2) …………………6分
∴
…………………9分
(3)
…………………12分
又
,
∴不等式 对任意的,都成立.
已知数列的前n项和,数列有,
(1)求的通项;
(2)若,求数列的前n项和.
【解析】第一问中,利用当n=1时,
当时,
得到通项公式
第二问中,∵ ∴∴数列 是以2为首项,2为公比的等比数列,利用错位相减法得到。
【解析】
(1)当n=1时,
……………………1分
当时, ……4分
又
∴ ……………………5分
(2)∵ ∴
∴ ……………………7分
又∵, ∴
∴数列 是以2为首项,2为公比的等比数列,
∴ ……………………9分
∴
∴ ①
②
①-②得:
∴
在中,,分别是角所对边的长,,且
(1)求的面积;
(2)若,求角C.
【解析】第一问中,由又∵∴∴的面积为
第二问中,∵a =7 ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:
又C为内角 ∴
【解析】
(1) ………………2分
又∵∴ ……………………4分
∴的面积为 ……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴ ……………………9分
又由余弦定理得:
又C为内角 ∴ ……………………12分
另【解析】
由正弦定理得: ∴ 又 ∴
已知数列满足,
(1)求证:数列是等比数列;
(2)求数列的通项和前n项和.
【解析】第一问中,利用,得到从而得证
第二问中,利用∴ ∴分组求和法得到结论。
【解析】
(1)由题得 ………4分
……………………5分
∴数列是以2为公比,2为首项的等比数列; ……………………6分
(2)∴ ……………………8分
∴ ……………………9分
∴
已知向量,且,A为锐角,求:
(1)角A的大小;
(2)求函数的单调递增区间和值域.
【解析】第一问中利用,解得 又A为锐角
第二问中,
由 解得单调递增区间为
【解析】
(1) ……………………3分
又A为锐角
……………………5分
(2)
……………………8分
由 解得单调递增区间为
……………………10分