若a, b表示两条直线,表示平面,下面命题中正确的是( )
A.若a⊥, a⊥b,则b// B.若a//, a⊥b,则b⊥α
C.若a⊥,b,则a⊥b D.若a//, b//,则a//b
一个棱柱为正四棱柱的条件是( )
A.底面是正方形,有两个侧面垂直于底面
B.底面是正方形,有两个侧面是矩形
C.底面是菱形,且有一个顶点处的三条棱两两垂直
D.每个底面是全等的矩形
下列命题正确的是 ( )
A.若·=·,则= B.若,则·=0
C.若//,//,则// D.若与是单位向量,则·=1
若且,则x是 ( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
已知正项数列的前n项和满足:,
(1)求数列的通项和前n项和;
(2)求数列的前n项和;
(3)证明:不等式 对任意的,都成立.
【解析】第一问中,由于所以
两式作差,然后得到
从而得到结论
第二问中,利用裂项求和的思想得到结论。
第三问中,
又
结合放缩法得到。
【解析】
(1)∵ ∴
∴
∴ ∴ ………2分
又∵正项数列,∴ ∴
又n=1时,
∴ ∴数列是以1为首项,2为公差的等差数列……………3分
∴ …………………4分
∴ …………………5分
(2) …………………6分
∴
…………………9分
(3)
…………………12分
又
,
∴不等式 对任意的,都成立.
已知数列的前n项和,数列有,
(1)求的通项;
(2)若,求数列的前n项和.
【解析】第一问中,利用当n=1时,
当时,
得到通项公式
第二问中,∵ ∴∴数列 是以2为首项,2为公比的等比数列,利用错位相减法得到。
【解析】
(1)当n=1时,
……………………1分
当时, ……4分
又
∴ ……………………5分
(2)∵ ∴
∴ ……………………7分
又∵, ∴
∴数列 是以2为首项,2为公比的等比数列,
∴ ……………………9分
∴
∴ ①
②
①-②得:
∴