若复数为纯虚数,则实数的值为( )
A. B. C. D.或
曲线在点P(1,12)处的切线与y轴交点的纵坐标是
A.-9 B.-3 C.9 D.15
若,则的值为( )
A.-2 B. 2 C.-1 D. 1
已知数列的前项的和为,是等比数列,且,。
⑴求数列和的通项公式;
⑵设,求数列的前项的和。
⑴ ,数列的前项的和为,求证:.
【解析】第一问利用数列
依题意有:当n=1时,;
当时,
第二问中,利用由得:,然后借助于错位相减法
第三问中
结合均值不等式放缩得到证明。
甲船由岛出发向北偏东的方向作匀速直线航行,速度为海里∕小时,在甲船从岛出发的同时,乙船从岛正南海里处的岛出发,朝北偏东的方向作匀速直线航行,速度为海里∕小时。
⑴求出发小时时两船相距多少海里?
⑴ 两船出发后多长时间相距最近?最近距离为多少海里?
【解析】第一问中根据时间得到出发小时时两船相距的海里为
第二问设时间为t,则
利用二次函数求得最值,
【解析】
⑴依题意有:两船相距
答:出发3小时时两船相距海里
⑵两船出发后t小时时相距最近,即
即当t=4时两船最近,最近距离为海里。
解关于的不等式
【解析】本试题主要考查了含有参数的二次不等式的求解,
首先对于二次项系数a的情况分为三种情况来讨论,
A=0,a>0,a<0,然后结合二次函数的根的情况和图像与x轴的位置关系,得到不等式的解集。
【解析】
①若a=0,则原不等式变为-2x+2<0即x>1
此时原不等式解集为;
②若a>0,则ⅰ)时,原不等式的解集为;
ⅱ)时,原不等式的解集为;
ⅲ)时,原不等式的解集为。
③若a<0,则原不等式变为
原不等式的解集为。