已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.
【解析】本试题主要考查了二次方程根的问题的综合运用。运用反证法思想进行证明。
先反设,然后推理论证,最后退出矛盾。证明:假设三个方程中都没有两个相异实根,
则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0
相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0.显然不成立。
证明:假设三个方程中都没有两个相异实根,
则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.
相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0. ①
由题意a、b、c互不相等,∴①式不能成立.
∴假设不成立,即三个方程中至少有一个方程有两个相异实根.
已知复数,,求的取值范围。
【解析】利用复数相等的概念,结合三角方程,把参数
命题方程有两个不等的正实数根, 命题方程无实数根。若“或”为真命题,求的取值范围。
【解析】本试题主要考查了命题的真值问题,以及二次方程根的综合运用。
【解析】
“p或q”为真命题,则p为真命题,或q为真命题,或q和p都是真命题
当p为真命题时,则,得;
当q为真命题时,则
当q和p都是真命题时,得
定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列 叫做等和数列,这个常数叫做该数列的公和。已知数列是等和数列,且,公和为5,那么的值为: _ ;这个数列的前n项和的计算公式为:_ ___.
若命题“不成立”是真命题,则实数的取值范围是_______。
根据条件:a、b、c满足,且a+b+c=0,下列推理正确的是 (填上序号)
①,②,③,④