已知f(n)=(2n+7)3n+9,存在自然数m,使得对任意正整数n,都能使m整除f(n),猜测出最大的m的值。并用数学归纳法证明你的猜测是正确的。
【解析】本试题主要考查了归纳猜想的运用,以及数学归纳法的证明。
∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36
∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除
然后证明n=1,2时,由上得证,设n=k(k≥2)时,
f(k)=(2k+7)·3k+9能被36整除,则n=k+1时,
f(k+1)-f(k)=(2k+9)·3k+1-(2k+7)·3k=(6k+27)·3k-(2k+7)·3k
=(4k+20)·3k=36(k+5)·3k-2(k≥2) 证明得到。解析 ∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36
∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除
证明 n=1,2时,由上得证,设n=k(k≥2)时,
f(k)=(2k+7)·3k+9能被36整除,则n=k+1时,
f(k+1)-f(k)=(2k+9)·3k+1-(2k+7)·3k=(6k+27)·3k-(2k+7)·3k
=(4k+20)·3k=36(k+5)·3k-2(k≥2) f(k+1)能被36整除
∵f(1)不能被大于36的数整除,∴所求最大的m值等于36
如图,在三棱柱中,侧面,为棱上异于的一点,,已知,求:
(Ⅰ)异面直线与的距离;
(Ⅱ)二面角的平面角的正切值.
【解析】第一问中,利用建立空间直角坐标系
【解析】
(I)以B为原点,、分别为Y,Z轴建立空间直角坐标系.由于,
在三棱柱中有
,
设
又侧面,故. 因此是异面直线的公垂线,则,故异面直线的距离为1.
(II)由已知有故二面角的平面角的大小为向量与的夹角.
已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.
【解析】本试题主要考查了二次方程根的问题的综合运用。运用反证法思想进行证明。
先反设,然后推理论证,最后退出矛盾。证明:假设三个方程中都没有两个相异实根,
则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0
相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0.显然不成立。
证明:假设三个方程中都没有两个相异实根,
则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.
相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0. ①
由题意a、b、c互不相等,∴①式不能成立.
∴假设不成立,即三个方程中至少有一个方程有两个相异实根.
已知复数,,求的取值范围。
【解析】利用复数相等的概念,结合三角方程,把参数
命题方程有两个不等的正实数根, 命题方程无实数根。若“或”为真命题,求的取值范围。
【解析】本试题主要考查了命题的真值问题,以及二次方程根的综合运用。
【解析】
“p或q”为真命题,则p为真命题,或q为真命题,或q和p都是真命题
当p为真命题时,则,得;
当q为真命题时,则
当q和p都是真命题时,得
定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列 叫做等和数列,这个常数叫做该数列的公和。已知数列是等和数列,且,公和为5,那么的值为: _ ;这个数列的前n项和的计算公式为:_ ___.