对于……大前提
……小前提
所以……结论
以上推理过程中的错误为( )
A.大前提 B.小前提 C.结论 D.无错误
下列说法中,错误的是( )
A.命题“若,则”的逆否命题为“若,则”
B.“”是“”的充分不必要条件
C.对于命题,则
D.若p且q为假命题,则p、q均为假命题
设是虚数单位,复数为纯虚数,则实数为( )
A.2 B.-2 C. D.
如图,是△的重心,、分别是边、上的动点,且、、三点共线.
(1)设,将用、、表示;
(2)设,,证明:是定值;
(3)记△与△的面积分别为、.求的取值范围.
(提示:
【解析】第一问中利用(1)
第二问中,由(1),得;①
另一方面,∵是△的重心,
∴
而、不共线,∴由①、②,得
第三问中,
由点、的定义知,,
且时,;时,.此时,均有.
时,.此时,均有.
以下证明:,结合作差法得到。
【解析】
(1)
.
(2)一方面,由(1),得;①
另一方面,∵是△的重心,
∴. ②
而、不共线,∴由①、②,得
解之,得,∴(定值).
(3).
由点、的定义知,,
且时,;时,.此时,均有.
时,.此时,均有.
以下证明:.(法一)由(2)知,
∵,∴.
∵,∴.
∴的取值范围
如图,某小区准备绿化一块直径为的半圆形空地,外的地方种草,的内接正方形为一水池,其余地方种花.若 ,设的面积为,正方形的面积为,将比值称为“规划合理度”.
(1)试用,表示和.
(2)当为定值,变化时,求“规划合理度”取得最小值时的角的大小.
【解析】第一问中利用在ABC中 ,
=设正方形的边长为 则 然后解得
第二问中,利用 而=
借助于 为减函数 得到结论。
(1)、 如图,在ABC中 ,
=
设正方形的边长为 则
=
(2)、 而= ∵0 < < ,又0 <2 <,0<t£1 为减函数
当时 取得最小值为此时
如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过作圆柱的截面交下底面于.
(1)求证:;
(2)若四边形ABCD是正方形,求证;
(3)在(2)的条件下,求二面角A-BC-E的平面角的一个三角函数值。
【解析】第一问中,利用由圆柱的性质知:AD平行平面BCFE
又过作圆柱的截面交下底面于.∥
又AE、DF是圆柱的两条母线
∥DF,且AE=DF AD∥EF
第二问中,由线面垂直得到线线垂直。四边形ABCD是正方形 又
BC、AE是平面ABE内两条相交直线
第三问中,设正方形ABCD的边长为x,则在
在
由(2)可知:为二面角A-BC-E的平面角,所以
证明:(1)由圆柱的性质知:AD平行平面BCFE
又过作圆柱的截面交下底面于.∥
又AE、DF是圆柱的两条母线
∥DF,且AE=DF AD∥EF
(2) 四边形ABCD是正方形 又
BC、AE是平面ABE内两条相交直线
(3)设正方形ABCD的边长为x,则在
在
由(2)可知:为二面角A-BC-E的平面角,所以