某班级共派出个男生和个女生参加学校运动会的入场仪式,其中男生甲为领队.入场时,领队男生甲必须排第一个,然后女生整体在男生的前面,排成一路纵队入场,共有种排法;入场后,又需从男生(含男生甲)和女生中各选一名代表到主席台服务,共有种选法.
(1)试求和;
(2)判断和的大小(),并用数学归纳法证明.
某学校设计了一个实验学科的考查方案:考生从6道备选题中一次性抽取3道题,规定至少正确完成其中2道题便可通过,已知6道备选题中考生甲有4道能正确完成,2道不能完成;考生乙正确完成每道题的概率都是,且每题正确完成与否互不影响.
⑴求甲正确完成的题数的分布列及期望;求乙正确完成的题数的分布列及期望;
⑵请用统计知识分析比较两名考生这门学科的水平.
如图,在长方体中,已知,,,E,F分别是棱AB,BC 上的点,且.
(1)求异面直线与所成角的余弦值;
(2)试在面上确定一点G,使平面.
已知数列满足,且.
⑴求的值;
⑵猜想的通项公式,请证明你的猜想.
已知二项式的展开式中各项系数和为64.
⑴求;
⑵求展开式中的常数项.
已知虚数z满足,且为实数,求z.